import pandas as pd
import os
# =====将数据存入hdf文件
# 批量读取文件名称
file_list = []
for root, dirs, files in os.walk('/Users/jxing/Desktop/coin_quant_class/data/class6'):
# 当files不为空的时候
if files:
for f in files:
if f.endswith('.csv'):
file_list.append(f)
# 创建hdf文件
h5_store = pd.HDFStore('eos_data.h5', mode='w')
# 批量导入并且存储数据
for file in sorted(file_list):
date = file.split('_')[2]
print(date)
# 导入数据
df = pd.read_csv('/Users/jxing/Desktop/coin_quant_class/data/class6/BITFINEX/EOSUSD/' + file,
skiprows=1,
parse_dates=['candle_begin_time'])
# 存储数据到hdf
h5_store['eos_'+date] = df
# 关闭hdf文件
h5_store.close()
# =====读取hdf数据
# 创建hdf文件
h5_store = pd.HDFStore('eos_data.h5', mode='r')
# h5_store中的key
print(h5_store.keys())
# 读取某个key指向的数据
print(h5_store.get('eos_20170701'))
print(h5_store['eos_20180301'])
# 关闭hdf文件
h5_store.close()