import pandas as pd
import os

# =====将数据存入hdf文件
# 批量读取文件名称
file_list = []
for root, dirs, files in os.walk('/Users/jxing/Desktop/coin_quant_class/data/class6'):
    # 当files不为空的时候
    if files:
        for f in files:
            if f.endswith('.csv'):
                file_list.append(f)

# 创建hdf文件
h5_store = pd.HDFStore('eos_data.h5', mode='w')

# 批量导入并且存储数据
for file in sorted(file_list):
    date = file.split('_')[2]
    print(date)

    # 导入数据
    df = pd.read_csv('/Users/jxing/Desktop/coin_quant_class/data/class6/BITFINEX/EOSUSD/' + file,
                     skiprows=1,
                     parse_dates=['candle_begin_time'])
    # 存储数据到hdf
    h5_store['eos_'+date] = df

# 关闭hdf文件
h5_store.close()


# =====读取hdf数据
# 创建hdf文件
h5_store = pd.HDFStore('eos_data.h5', mode='r')

# h5_store中的key
print(h5_store.keys())

# 读取某个key指向的数据
print(h5_store.get('eos_20170701'))
print(h5_store['eos_20180301'])
# 关闭hdf文件
h5_store.close()